Advances in silicon photonics have resulted in rapidly increasing complexity of integrated circuits. New methods are desirable that allow direct characterization of individual optical components in-situ, without the need for additional fabrication steps or test structures. Here, we present a new device-level method for characterization of photonic chips based on a highly localized modulation in the device using pulsed laser excitation. Optical pumping perturbs the refractive index of silicon, providing a spatially and temporally localized modulation in the transmitted light enabling time- and frequency-resolved imaging. We demonstrate the versatility of this all-optical modulation technique in imaging and in quantitative characterization of a variety of properties of silicon photonic devices, ranging from group indices in waveguides, quality factors of a ring resonator to the mode structure of a multimode interference device. Ultrafast photomodulation spectroscopy provides important information on devices of complex design, and is easily applicable for testing on the device-level.
展开▼